As part of our re branding to CADFEM, we have a new website

You will be redirected to the new website in 12 seconds.

If you wish to stay on the old website, please click here
Laminated Rotor Design Optimisation
PDF version | Download



CADFEM UK CAE Ltd. were required by their client to carry out a prototype design investigation of a laminated rotor to be used in a hydraulic steering system in a car. A series of analyses were carried out on various rotor designs. Two main designs were investigated:

The objective of the investigation for both of the above designs was to evaluate the reduction of weight by hollowing the hub section, whilst maintaining mechanical integrity. Results were required for:

The rotor was composed of 435 laminations 0.35 mm thick stacked axially onto the shaft. A keyway on the shaft retained the laminations in rotation. Axial location was provided by the rotor endplates clamped by the nut and lock washer. A banding layer was wound onto the outer circumference of the laminations and was included to retain the structure against radial loads.

The laminations include 8 shaped magnet pockets; the cavity around the magnets was filled by a structural epoxy adhesive. The area around the magnets and banding was of particular interest.

The operating conditions (speed, temperature, fundamental frequency) and material properties of all materials were supplied by the client.



Analyses were run for many different design and load configurations of the laminated rotor. The two main design types were as follows:

Hollow Laminated Core

In this design the hub area was filled by extending the laminations down to the shaft. Weight reduction was achieved by hollowing the laminations between the back iron region and the shaft interface.

The area underneath each magnet was shaped leaving eight connecting spokes.
The amount to which the spoke number or width could be reduced was investigated.

The graphics to the left shows examples of radial cross-sections of hollow lamination rotor hubs.

Drilled Aluminium Core

In this design an aluminium hub was included between the shaft and laminations. The rotor hub was retained by an interference fit with the shaft.

The rotor construction was similar to the Hollow Laminated Core design with magnets inserted into axial cavities running the length of the back iron. This back iron was then located onto the hub using two keyways displaced at 180 degrees. The drive end balance plane is integral with the hub. A second balance plane at the non-drive end also provides axial location to the lamination assembly. A radial cross section of the drilled aluminium rotor hub is shown in the graphic to the right.

The stress distribution resulting from hollowing the hub was investigated, as were the effects due to the hoop stress near the shaft interface. All analyses were carried out using ANSYS DesignSpace.



Design Benefits

The shape was optimised to minimise mass and maximise the responsiveness of the system once installed in the car. The client was provided with results of analyses carried out on many design and loading combinations, from this the client was then able to make a decision on which design they thought would give them the most material saving without compromising on the performace of the rotor. The design team felt that this analysis technique provided them with a cost effective and time efficient method without having to go to the expense of manufacturing and testing prototypes.


ANSYS 16.0 Capabilities Chart | Download
Upcoming Training
ANSYS Mechanical Nonlinear Connections
Mar 16th - 17th, 2016
ANSYS Mechanical Nonlinear Materials
Mar 18th, 2016
ANSYS Spaceclaim
Apr 5th, 2016
View All
Newsletter Sign up
Other Case Studies
Buckling Analysis of a Condensate Storage Tank

Linear & Nonlinear Static Analyses

Escalator Step Analysis

CFD Design and Analysis of a Gas Damper

Evaluation of wind comfort levels around building developments

CFD and Structural FEA Analyses on a Pump Case

Explicit Analysis
Blast Vent Panel Explicit Dynamics Analysis
Drop Test Analysis of a Mobile Chip and Pin Machine

Design Optimisation
Design Optimisation of a Wind Turbine Blade

Optimised Design of IPP Drive Support Structure

View All
We Socialise
Like us on Facebook
Join us on LinkedIn
Follow us on Twitter
Subscribe to our youtube channel
Cookie PolicyVAT No. 672779484 • Company Reg: 3264932 • ISO9001 Cert. No. LRQA 4005361Copyright 2016